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Abstract
It is shown that a metal–insulator transition can occur far from half-filling in the
negative-U Hubbard model in the presence of long-range repulsive interactions.
Specifically, we consider the bcc lattice at an electron concentration of 2/3 and
show that a CDW insulating state exists which is energetically favoured over the
relevant metallic states. The repulsive interaction plays the same role as it does
in stabilizing a Wigner crystal. Despite the absence of Fermi surface nesting,
the CDW insulator appears at rather small values of the interaction, preceded
by a CDW semimetal at even smaller values. This places severe restrictions
on the region of the parameter space where superconductivity may exist. We
believe that the model will show similar behaviour for other electron densities
and other lattices.

1. Introduction

The negative-U Hubbard model has frequently been used to study superconductivity [1–3].
The model is characterized by a nonretarded on-site attraction U which promotes local pairing,
and gives rise to charge-density-wave (CDW) instabilities. In the U -only model, these
instabilities arise from lattice effects, and are strongest near half-filling, but usually are not
strong enough to destabilize a superconducting state. However, long-range Coulomb repulsion
V (r) is expected to favour a CDW over superconductivity and thus has to be considered in
describing real systems. Since a CDW is a dielectric screening instability (see below), one
cannot invoke metallic screening beforehand, and use short-range repulsion to start with. In
practice, theoretical calculations are based on the so-called extended Hubbard model in which
V (r) is taken to be short-ranged, and usually restricted to nearest neighbours. This model has
been studied widely; and has recently been applied, e.g., to barium bismuthate [1, 4]. The
combination of a short-ranged V and Fermi surface nesting in a bipartite lattice is sufficient
to stabilize a CDW insulator at half-filling. Even in nonbipartite lattices an insulator can exist
if V is large enough [2]. However, the insulator does not exist away from half-filling. It
evolves into a CDW metal or a coexisting phase, which soon gives way to the ordinary metal
(and hence, a superconductor). Experimentally, however, barium bismuthate is not only an
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insulator at half-filling, it continues to be one far from half-filling, in disagreement with the
prediction of the short-range model [1].

In this paper we study the instability of a normal metal toward a CDW, in the presence
of a true long-range repulsion V (r) ∝ 1/r . In this case, the existence of insulator far from
half-filling, while possible in principle, is yet to be established theoretically. Here we provide
an example of such a state based on a microscopic calculation. We are primarily interested in
the U < W regime, where W is the bandwidth. A simplifying feature of the CDW instability
is that it occurs at the Hartree level. Hence a self-consistent Hartree approximation is sufficient
to establish the existence of the CDW state. However, for long-range V (r), even the Hartree
approximation runs into serious mathematical difficulties. Since the CDW is a crystal on
top of a crystal, finding the correct self-consistent structure for an arbitrary value of the
electron concentration nc is exceedingly difficult; and for an incommensurate nc, the problem
is mathematically intractable.

We therefore consider a specific (bcc) lattice at a specific density, nc = 2/3, which allows
us to construct reasonably simple commensurate structures. Since the lattice is bipartite, the
Fermi surface is perfectly nested at half-filling (nc = 1), leading to a CDW insulator. At
nc = 2/3 there is no Fermi surface nesting, and there is no stable insulating state if V is short-
ranged. However, for long-range V , we find an indirect gap CDW insulator (different from the
one found at half-filling), which is always stable relative to the CDW metallic state that evolves
out of half-filling. This conclusion is shown to be consistent with the results of an analysis
in the strong-coupling (U = ∞) limit. In this case, electrons are paired into bosons which
do not move; the problem involves only potential energy so that the Hartree approximation
is exact. The elementary excitations are found to be gapped, implying that the CDW state is
locally stable. The case of large (but finite) U is very difficult to handle, and is only discussed
qualitatively.

Our main results can be summarized in terms of an effective interaction u (to be defined
later). The ordinary metal is stable only for u < 0.142W , and is separated by a CDW semimetal
from the insulator, which appears for u > 0.174W . Thus the insulator exists over a rather
large region of the parameter space. These results, though derived here for a specific density,
are likely to be more general since the reason for the stability of the CDW insulator is the
combination of two factors: long-range repulsion which favours ‘Wigner’ crystals at lower
densities [5], and lattice effects which promote CDWs toward half-filling. However, unlike
the Wigner crystal, this is a crystal formed by pairs, rather than electrons.

Previous work on the short-range problem, in which both the CDW and superconducting
order parameters are included, has shown that the CDW insulator remains stable except when
V is very small [2]. This conclusion is likely to be valid in the long-range case as well.
However, a similar calculation is not attempted here since, for long-range V (r), the problem
becomes mathematically impractical. We discuss these issues in the concluding section 4. In
section 2, we discuss the occurrence of a CDW instability in the ordinary metal, and the role
of metallic screening. We then consider the two-sublattice insulator which is the ground state
at half-filling, and which, away from half-filling, becomes metallic. In section 3, we identify
a different, three-sublattice, CDW state using a strong-coupling treatment. The CDW states
are then studied by a self-consistent Hartree approximation. The energies are compared with
those metallic phases, with or without a CDW. Our results are summarized in section 4.

2. The two-sublattice CDW

We consider the Hamiltonian

H = −t
∑

i jσ

c†
iσ c jσ − U

∑

i

ni↑ni↓ + 1
2

∑

i �= j

V (ri − r j)ni n j , (1)
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where c†
iσ creates an electron with spin σ and ni = ∑

σ niσ . The first term describes nearest-
neighbour hopping, the last term, long-range repulsion, and U > 0. For uniform states,
the Hartree part of the interaction energy is cancelled by the neutralizing positive background.
However, in the presence of a CDW, the Hartree term dominates, and can be used to distinguish
different states. This is done by using the self-consistent Hartree approximation. We do
not expect higher-order contributions (e.g., exchange and correlation) to change our result
qualitatively.

Let us first consider the onset of a CDW instability from the metallic side. In a metal
the effective electron–electron interaction is screened. It is then tempting to start with a
screened, i.e., short-ranged, interaction and then look for the CDW instability. Such a procedure
is not valid, however. To see this, consider the screened interaction in the random-phase
approximation (RPA): vscr(q) = v(q)/D(q). Here v(q) = −U/2 + Vq is the charge part of
the interaction potential, where

Vq =
∑

r �=0

eiq·rV (r), (2)

is the repulsive part. D(q) is the static dielectric constant in the RPA:

D(q) = 1 − v(q)χ0(q), (3)

where χ0(q) is the charge susceptibility for the noninteracting system.
The metallic state becomes unstable to a CDW with a wavevector Q when its charge

susceptibilityχ(Q) diverges. Now, the introduction of CDW gives rise to screening which must
be included in χ . Again using RPA, we have χ(q) = χ0(q)/D(q). Thus, the CDW instability
is a dielectric instability associated with screening. It occurs when D(Q) vanishes for some Q.
This is precisely the condition obtained from our self-consistent Hartree approximation, which
is therefore consistent with screening. Note that v(q) appearing in D(q) is the unscreened
interaction. It is therefore not permissible to do the screening first and then look for a CDW
instability. Although this discussion is based on a single wavevector Q, the arguments are
based on the theory of linear response and hence are valid for general density modulations.

The noninteracting susceptibility χ0(q) is negative. In general, there are Qs such that VQ

(and hence v(Q)) is also negative, so that a CDW instability can occur. At half-filling, the
Fermi surface is perfectly nested for Q = (0, 0, 2π

a ), leading to a logarithmically divergent
χ0(Q). The metal is then unstable to a two-sublattice CDW, with a density modulation

ρ(r) = ρ0 cos Q · r, (4)

for any value of u ≡ −v(Q) = U/2 − VQ. For this Q, VQ is negative so that u > 0. The
behaviour is essentially the same as in the bipartite simple cubic lattice [1]. In the absence of
V , the CDW and s-wave superconductivity are degenerate. Inclusion of V (r) stabilizes the
CDW.

In the self-consistent Hartree approximation, the mean-field Hamiltonian has the form
HMF = H0 − ∑

i φi ni , where H0 is the hopping part and

φi = −U

2
ρ(ri ) +

∑

j �=i

Vi jρ(r j) (5)

is the Hartree potential and ρ(ri) = 〈ni 〉− nc is the average electron density, to be determined
self-consistently. Substitution of ρ(r) from equations (4) in (5) leads to a Hartree potential
of the same form: φi = uρ0 cos(Q · ri) where, as before, u = U/2 − VQ. In the momentum
space, the MF Hamiltonian becomes

HMF =
∑

kσ

ε(k)c†
kσ ckσ − uρ0

2

∑

kσ

[c†
k+Q,σ ckσ + h.c.], (6)
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where

ε(k) = −8t cos
kxa

2
cos

kya

2
cos

kza

2
is the single-particle energy and a is the side of the cubic cell. In the two-sublattice case, k is
paired with k + Q, and one has a 2 × 2 matrix problem in each k subspace. This leads to two
bands with energy E± = ±R, with R(k) = (ε2(k) + u2ρ2

0)
1/2. At half-filling, the lower band

is completely filled at T = 0, and the state is an insulator with a gap 2uρ0.
The two-sublattice state continues to be a self-consistent solution for nc < 1. But now

the lower band is partially filled, and the system is a CDW metal. The ground state energy is
given by: EG = EMF + 1

2 uρ2
0 . The parameter ρ0 is determined self-consistently from

1

u
= 1

N

∑

k

f (E(k)− µ)− f (E(k)− µ)

R(k)
, (7)

where f is the Fermi function, and µ is the chemical potential. We have solved the MF
equations numerically for nc = 2/3, with the result that the energy is larger than that of a
different CDW state described below.

3. The CDW states at nc = 2/3

3.1. Strong-coupling limit

To find a suitable CDW state it is useful to set U = ∞ (or, t = 0), which is the strong-coupling
limit. The electrons form local pairs (hard-core bosons); however there is no kinetic energy, as
neither bosons nor electrons can hop. Hence the Hartree approximation is exact in this limit.
The problem is reduced to distributing pairs of density nc/2 such that the interaction energy is
a minimum. The contribution from the U term is the same for all configurations. Hence we
need only to calculate the energy EV corresponding to the repulsive part, V (r).

At half-filling, this is exactly the problem of the ionic crystal [6] of alternating charges,
which leads to the same two-sublattice structure: ρ(r) = ρ0 cos Q · r. The corresponding
cohesive energy is

EV = VQρ
2
0

2N

∑

i

cos2(Q · ri ). (8)

Since VQ is negative, so is EV , whereas for the uniform state EV = 0. Hence, by itself, V (r)
leads to the same CDW ground state.

Away from half-filling, the lowest-energy structure will be complex, particularly for
incommensurate nc. However, for nc = 2/3, we can construct simple periodic arrays. Since
the density of pairs is 1/3, the natural period of a charge modulation is 3. Indeed, it is easy
to see that, for d = 1, the minimum-energy configuration has every third site occupied by
a pair: 02002002002. . . . For the bcc lattice, we consider a similar period-3 modulation in
which every third plane perpendicular to the z-axis (i.e., located at z = 3ma/2, m = integer)
is occupied by pairs; the other two planes are unoccupied. This is a simple generalization of
the two-sublattice state, in which every other plane is occupied.

Interestingly, this structure is also described by a single cosine: ρ(r) = ρ0 cos Q · r. But,
now Q = (0, 0, 4π

3c ), and ρ0 = 4/3. Here we do not do a global search, but show that the
chosen structure is energetically favoured over the two-sublattice CDW and the ordinary metal.
Nonetheless, it is interesting to note that this is the simplest structure of period 3. It is locally
stable (see below), and has no nearest-neighbour sites occupied, and thus is likely to have the
lowest energy.
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Using equation (8), we obtain EV = VQρ
2
0/4, with ρ0 = 4/3. Here, VQ is the cosine

transform of V (r). Let us consider a 1/r potential:

V (r) = Vnn
r0

r
,

where Vnn = V (r0), is the value of the potential at the nearest-neighbourdistance r0 = a
√

3/2,
and sets the energy scale for the repulsive interaction. Then, VQ = −αVnn, where α is a
generalized Madelung constant:

α(Q) = −
∑

r �=0

cos(Q · r)
r/r0

.

Evaluating the sum accurately, we obtain α ≈ 1.440, so that EV = −0.64Vnn.
It is interesting to compare with the two-sublattice case. Now, at nc = 2/3, there is no

single configuration of this type. For comparison, we can simply take the results of the Hartree
approximation with the choice of ρ0 which gives the lowest energy. Since n(r) is nonnegative,
the largest value of ρ0 is 2/3. Also, in this case, α ≈ 1.76 [6], so that EV = −0.39Vnn.
Therefore, the period-3 CDW has a lower energy.

On the other hand, if V (r) is restricted to nearest neighbours, the two states have the
same energy, and are degenerate with infinite number of other configurations, obtained, e.g.,
by moving an occupied layer up or down by one step. Then the system can lower its energy
by constructing a CDW metal from a linear combination of such states.

It is useful to consider the elementary excitations for the three-sublattice state. The
important one is obtained by moving a pair from i to an empty site j . The corresponding
energy is given by

Eex = 4αVnn − 4Vi j,

where, Vi j = V (ri − r j ). Clearly this is lowest when i, j are nearest neighbours, with
Eex = 4(α−1)Vnn, which is positive since α > 1. We have calculated other excitations, which
are also found to be gapped—with a scale set by Vnn. Single-electron excitations which are
obtained by breaking a pair are also gapped; in this case the gap is larger, as one also has to add
U to the energy. Hence, in the strong-coupling limit, the three-sublattice state is locally stable.

This analysis also gives us some insight into the behaviour of the model for large but finite
U � t , when electrons remain paired as hard-core bosons. This limit is best understood in
pseudo-spin formalism [7], described in terms an occupied (‘up’) and an empty (‘down’) site.
The Hamiltonian is then reduced to a generalized antiferromagnetic Heisenberg Hamiltonian:

H = J
∑

(i, j)

Si · S j + 4
∑

i, j

Vi j Siz S jz, (9)

where J = 4t2/U , and each bond i, j is to be counted once. Fixing the number of electrons
(hence, bosons) is equivalent to fixing the z-component of magnetization: Mz = ∑

i Siz , which
is zero at half-filling and finite away from half-filling. The Ising (second) term describes the
long-range repulsion between the bosons. The transverse (xy) part of the first term describes
boson hopping. Bose condensation gives rise to superconductivity which appears as AF
ordering in the transverse direction. The z-linear part of the J term represents a short-range
repulsive interaction which, together with the long-range V term, favours a z-linear SDW
corresponding to the CDW in the original model. In the absence of V , superconductivity wins
away from half-filling (Mz finite). In this case, there is no energy scale at T = 0, and the
wavefunctions are all independent of J . Therefore, the ground state remains superconducting
as U → ∞, i.e., as J → 0.
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The situation is different in the presence of V . Now, there is a new energy scale, J/Vnn.
At U = ∞ (J = 0), there is no hopping, and hence no metallic or superconducting behaviour.
This is the strong-coupling limit, which has a CDW ground state. Furthermore, as shown
above, elementary excitations that involve hopping of bosons are gapped. It follows that the
CDW state is stable against the superconducting as well as the bosonic metal states—as long as
J is small compared with the excitation energies ∼Vnn. Now, by definition, J � t � U , and
thus J is small in the entire large-U region. Hence, for reasonable values of Vnn, the region of
stability of the CDW state can be quite large. In fact it is larger than suggested by this simple
analysis since the CDW gains additional energy from the J term as well. A more accurate
analysis of the large-U limit is beyond the scope of the paper.

3.2. Hartree approximation

The local pairing picture does not apply for U < W , which is our main region of interest. In
this case, we use the self-consistent Hartree approximation, with the mean-field Hamiltonian
given by equation (7). For the three-sublattice CDW, each k is coupled to k + Q and k − Q,
which form a closed subspace. In each k subspace we have to diagonalize a 3 × 3 matrix of
the form

M =
(
ε(k) −� −�
−� ε(k + Q) −�
−� −� ε(k − Q)

)
, (10)

where� = uρ0/2. This leads to three bands of energy Ei(k), i = 1, 2, 3. The order parameter
ρ0 is determined self-consistently from

ρ0 = 4

3N

∑

ik

[ψi1(k)ψi2(k) + ψi2(k)ψi3(k) + ψi3(k)ψi1(k)] f (Ei(k)− µ), (11)

whereψi j are the eigenvectors, with i, j = 1, 2, 3 and j corresponding to k, k + Q and k − Q,
respectively. The ground state energy is then given by

EMF = 2

3N

∑

ik

Ei(k) f (Ei(k)− µ) +
1

4
uρ2

0 .

We have solved the MF equations numerically with very good accuracy (using up to 106 k
points). The results can be expressed in terms of the parameter u = U/2 + αVnn. At low u,
the state is an ordinary metal, the CDW appears only above u1 = 2.27t . As shown in figure 1,
the corresponding value for the two-sublattice case is u1 ≈ 3.1t , which is much higher. Note,
however, that the parameter u is not the same in the two cases for the same values of the
interaction parameters, U and Vnn, since α is different. To correct for this we can eliminate
Vnn and use the calculated value of α to obtain

u(3) = 0.82u(2) + 0.09U,

where u(n) denotes u for the n-sublattice state. Let E(n) be the corresponding energy. Then,
E(2) at u(2) should be compared with E(3) at u(3). This can be done by shifting the two-
sublattice curve to the left from u(2) to u(3) in figure 1. Clearly, for a given u(2), the smallest
u(3) occurs for U = 0, and the corresponding E(3) is the highest. The shifted E(2) curve is
shown as the intermediate line in figure 1. Note that E(3) is still lower, which shows that the
three-sublattice state always wins over the two-sublattice state.

In the three-sublattice case, � becomes nonzero above u1. As shown in figure 2, the
transition is continuous. The state however remains metallic (CDW) up to u2 = 2.78t . This
can be seen from figures 3(a) and (b), where we have plotted the density of states (DOS). There
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Figure 1. Ground state energy per site for the two-sublattice CDW state (E(2)—dashed line) and
the three-sublattice CDW state (E(3) solid line) as a function of u = U/2 + αVnn. The energies
are measured relative to the energy of the ordinary metallic (no CDW) state. In each case the CDW
state appears above a critical u where its energy becomes negative. Note that u is not the same for
the two cases (for given U and Vnn). The intermediate line (dash–dotted) shows E(2), shifted to
the left appropriately (see the text), so that two energies can be compared directly. Clearly, E(3)
is still lower.
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16

14

12

10

8

6

4

2

0
0 2 4 6 8 10

u

Figure 2. The direct gap parameter� and the indirect gap parameter Egap as functions of u (t = 1).
The CDW semimetal (� �= 0, Egap = 0) exists between u1 = 2.27t and u2 = 2.78t . For u < u1,
the state is an ordinary metal and for u > u2 it is a CDW insulator with � and Egap both nonzero.

is a large depletion of the DOS near the Fermi energy, but no true gap (figure 3(a)). For u > u2,
a gap develops (figure 3(b)) and the system becomes an insulator. The gap and the parameter
� are shown in figure 2. At large u, both are linear in u.

The CDW metallic state that exists between u1 and u2 is different from the one in the two-
sublattice case. In the latter state, there is always a gap between the two bands, and the lower
band becomes partially filled away from half-filling. In the period-3 case, there is also a direct
gap (at the same k points). But the bands overlap along some k directions. The maximum
energy of the lowest band is larger than the minimum energy (which is at a different k point)
of the intermediate band, as shown in figure 4. Above u2, the two bands finally separate,
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Figure 3. Density of states for the three-sublattice CDW semimetal (a) and the CDW insulator
(b). In the semimetallic case, � is small, and the bands overlap, so that there is no true gap. In
the insulator, � is larger, and a gap opens. The lower band is completely filled, and the upper two
bands are empty.

leading to an indirect gap insulator. A similar situation occurs in fcc lattice at half-filling [2].
Such a state is in fact a semimetal, characterized by an interesting fermi surface topology and
an effective carrier density which decreases with increasing u. Also, at a given u, the carrier
density and the shape of the Fermi surface is expected to vary rapidly with temperature as �
decreases increasing T . This would lead to unusual transport properties.

Our main result is the existence of a CDW insulator far from half-filling. Also, the CDW
appears at a rather small value of u since u1/W = 0.142, and u2/W = 0.174, where W = 16t ,
is the noninteracting bandwidth. Hence, the insulating state exists over a fairly large region of
the parameter space.

The insulating state above u2 is different from the CDW insulator found at half-filling.
The latter is characterized by a single gap (=2�) in the one-particle spectrum, whereas the
CDW insulator of period 3 is characterized by two one-particle gaps, a direct gap ∼� which
will show up in optical conductivity, and an indirect gap Egap = E1,min − E2,max, which sets
the scale for the thermodynamic properties.
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Figure 4. Energy bands Ei (k) along the direction kx = ky , with kz = 0 in the semimetallic region.
The lowest band is separated from other two by a direct gap (at the same k), but overlaps with the
intermediate band, as its maximum is clearly above the minimum of the latter (at a different k). As
� increases, these two bands separate, leading to an indirect gap insulator.

4. Discussions

To summarize, the combination of long-range Coulomb repulsion and lattice effects can
stabilize a CDW insulator far from half-filling in the negative-U Hubbard model. Although our
calculation is for a particular density, we expect similar results for other lattices and densities,
particularly since there are no Fermi surface nesting effects. However, because the CDW is
crystal on top of crystal, commensurability will always be important. Because of this, solving
the Hartree problem for a general density will be difficult.

In the present case, the fact that a CDW insulator exists at such a small u has serious
consequences for superconductivity, which has not been considered in our mean-field analysis.
A calculation including both CDW and superconducting order parameters is not feasible
since long-range repulsion makes the numerical problem intractable. However, the central
issue—namely, the stability of the insulting state relative to the superconductor—can be easily
understood on the basis of earlier work on the short-range model.

Previously, we have carried out a detailed mean-field analysis including both
superconducting and CDW order parameters for the fcc lattice at half-filling [2], but
with a nearest-neighbour repulsion. In that case, the phase diagram in the absence of
superconductivity is similar to the one found here at nc = 2/3: an indirect gap CDW insulator
is separated from an ordinary metal by a CDW semimetal. Thus the problem is essentially the
same. Besides the ordinary metal, the CDW semimetal has a superconducting ground state
over some part of the parameter space where superconductivity and CDW coexists. However,
the insulating phase is found to be stable against superconductivity except very close to the
metal–insulator phase boundary or for very small V (compared with W and U ), as one would
expect. The insulator is also stable in the large-U limit (U � W ) for relatively small V/W .
We expect a similar behaviour in the present case also. In fact, long-range repulsion is likely
to be even more helpful in stabilizing the insulator.

The reason for the relative stability of the CDW insulator is that in the presence of
V , the excitation spectrum in the pairing channel is gapped, except when V is small.
Note that the CDW is favoured by both the U and V terms. However, only the U term
favours superconductivity. In addition, V term opposes superconductivity since, in the
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superconducting state, it contributes an energy
1
2

∑

i �= j

V (ri − r j )|〈c j↓ci↑〉|2,

which is always positive. Hence, for fixed U , the CDW always wins if V is large enough.
This argument is general. For example, Taraphder et al calculated the energy spectrum in the
pairing channel for the cubic crystal with a short-range V . They found a collective excitation
(‘cooperon’) which has charge 2 and spin zero [1], and which appears in the gap of the
insulator. In the pseudo-spin language, the cooperons are the analogues of spin waves. They are
gapped because their is no pseudo-spin symmetry in the presence of V . While the calculations
in [2, 1] are based on the short-range model, it is obvious that long-range repulsion would
make superconductivity even less favoured.

Similarly, in the large-U (i.e., local pairing) limit, the superconducting (and, metallic)
energy scale is set by J = 4t2/U , whereas the CDW energy scale is set by 4V. As discussed
earlier, the relevant excitations in the CDW insulating phase are again gapped. Hence, as long
as V is large enough compared with J , superconductivity cannot win.

Experimentally the appearance of the insulator is relevant for bismuthates, although in that
case the lattice is cubic. Another potential candidate is the alkali fulleride A4C60 (A = alkali
atom), which is a nonmagnetic insulator [8]. It has a body-centre-tetragonal structure which is
bipartite, and the electron density is nominally 2/3. In principle, the insulator can be a CDW.
It is however not clear that the one-band negative-U Hubbard model can be applied to this
system.
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